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TECHNICAL NOTE 2196

EFFECT OF HEAT-CAPACITY LAG ON THE FLOW

THROUGH OBLIQUE SHOCK WAVES
By H. Reese Ivey and Charles W. Cline

SUMMARY

An analysis is made of the effects of variable heat capacity on the
flow parameters for oblique shock waves at high supersonic speeds at sea
level, Two sets of results are obtained: one corresponding to condi-
tions immedistely behind the shock wave where only the active degrees of
freedom of the molecules are in equilibrium; and another representing
the asymptotic conditions far behind the shock wave where all the degrees
of freedom are in equilibrium,

The flow characteristics behind strong oblique shock waves are shown
to depend upon the distance downstream of the wave as well as the Mach
number and flow deflection. The density distribution at high speeds is
many times as sensitive to heat-cepacity changes as the pressure distri-
bution., The effect of heat-capacity variation is expected to be of
increasing significance at higher altitudes.

The study of heat-capacity effects was used as background informa-
tlon to derive a yery simple expression for predicting pressures due to
shock waves and expansion waves at Mach nunmbers from 1.3 to «. The
pressure equation is applied to several problems and is shown to be
surprisingly accurste.

INTRODUCTION

As the speeds and eltitudes of missiles increase, the ranges of
applicability of many aerodynamic theories are exceeded and more rigorous
theories must be used not only in calculating the forces on aircraft but
also in designing and calibrating instrumentation and experimental equip-
ment, Reference 1 began the derivation of a simple theory for calcula-
ting the pressures over various shapes at hypersonic speeds. In the
theory of reference 1 the simplifying assumption was made that the ratio
of specific heats of the gas was 1.0, For that particular ratio the
various integrations involved were readily performed and a very simple
expression was obtained for calculating the pressure over airfoils and
bodies of revolution. The curves of pressure ageinst flow deflection
obtained have the proper trends; however, the effect of specific-heat
ratio on the magnitude of the pressures needs further study.
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Bethe and Teller (reference 2) have generalized the theory of shock
waves to the case where the specific heat changes with temperature. The
methods of quantum statistics were used to calculate the distribution of
energy among the various degrees of freedom for different densities and
temperatures. The equilibrium energy distribution was used to determine
the equilibrium conditions far behind normal shock waves. Two sets of
conditions were presented: one set of conditions immediately behind the
shock wave, corresponding to a constant ratio of specific heats; and
another set of conditions far behind the shock wave where the energy is
distributed according to equilibrium considerations. Reference 2 adds
eppreciably to the understanding of strong shock waves; however, the
results are not in the simplest form for application to efficient alir-
craft where most of the shock waves are oblique. Because the flow
deflection is zero in all normal shock waves, reference 2 does not show
the effect of the heat-capacity variation on’the shock-wave angle for a
given flow deflection.

The purpose of the present paper is to present the results of Bethe
and Teller in a form more directly applicable to oblique shock waves.
The effects of heat-capacity variation on the flow conditions around
wedge airfoils are investigated. The results of the study are used: to
derive a simple expression for calculating the pressure coefficients
due to shock waves and expansions at Mach numbers from 1.3 to o,

SYMBOLS
M . Mach number
P pressure coefficient
v velocity, feet per second
@ " angle of attack, degrees
B . wedge angle, degrees
B! flow deflection angle, degrees
V4 ratio of spgcific heats
el semiwvedge angle, degrees
e shock-wave angle, degrees
p density (without subscript, behind shock wave), slugs per

cubic foot -
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Subscripts:

a approximate

e exact

n normal to shock wave
1 in region 1

2 in region 2

3 in region 3

) . in free stream

ANATYSTS AND DISCUSSION

Effect of Heat-Capacity Iag

The properties of an oblique shock wave can be related to the .
properties of a normal shock wave by the equation

tan @

% " Tano - 5 (1e)
where
p density behind wave
P density in front of wave
o shock-wave angle
B! flow deflection

In classical shock-wave theory, the specific heats are assumed to remain
constant throughout all regions of flow., For such flow conditions, the
density ratio p/p, is determined from the Mach number normsl to the
shock wave by the equation '

p 7+ 1
== (1p)
o 7_]_+_2._

Mp2
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The Mach number normsl to the wave is defined as

M, = M, sin 6 (2)

At very high flight speeds the air is heated during the shock com-
pression to such high temperatures that the specific heats can no longer
be considered (even approximately) constant throughout the entire region.
The specific heats change from their low-temperature value in front of
the shock wave to an equilibrium velue far behind the shock wave in the
following manner: The air enters the shock wave at the initial condi-
tions of temperature, density, and pressure. Five degrees of freedom,
three translational and two rotational, are active. In an extremely
short distance (of the order of a mean free path) the air is compressed
and heated to a very high temperature. A great deel of energy has been
transmitted to the random energy of the molecules but, because of the
short distance in which the compression has taken place, an insufficient
number of collisions have occurred to excite any inert degrees of freedom,
The air flow, consequently, follows the pattern predicted by simple shock-
wave theory in this region immediately behind the shock.

The air at this point is at a very high temperature., Collisions
between molecules are occurring frequently and at very high speeds;
consequently, the vibrational degree of freedom begins to absorb energy
from the strong collisions. As time passes, the vibrational degree of
freedom begins to store up apprecigble energy. In time the vibrations
become sufficiently strong to cause dissociation of the molecules into
atoms. Now, if the temperature, which decreases as each new degree of
freedom absorbs energy from the random motion of the molecules, is still
sufficiently high, further collision of the dissociated atoms with other
atoms or with molecules will cause ionization, which may be considered
another degree of freedom. In general, the air comes to some equilibrium
condition with energy distributed in definite proportions to the various
degrees of freedom and with the temperature sufficiently high to cause
the frequency and strength of the particle collision to be adequate to
maintain this energy distribution. .

Bethe and Teller (reference 2) have generalized the theory of normal
shock waves to the case where the specific heat changes with temperature.
The properties of a normal shock wave camnnot be converted to those of an
oblique shock wave for the condition of variable specific heats as easily
as they can in classical shock-wave theory because the effect of variable
conditions behind the wave must be considered. The properties of the air
flow with variable specific heat, however, can be determined for three
regions about a wedge airfoll by a fairly simple analysis of the condi-
tions which govern the flow pattern at, these three points. These regions
are illustrated in figure 1 and are discussed in detail in the following

paragraphs:

—_—— e ———

———— s — =



NACA TN 2196 5

Region 1: The first case to be considered deals with the flow
behind the leading shock wave and in the immediate vicinity (within a
few mean free-path lengths) of the nose of the wedge (region 1). In
passing through the shock wave in this region the molecules have their
energy distributed among the active degrees of freedom. Immediately
after passing through the wave and before the energy has had sufficient
time to be distributed by molecular collisions to any degrees of freedom
other than the original five, the flow is forced to follow the surface
of the wedge. Consequently, the fluid, forced to deflect to the wedge
angle before 7 has had sufficient time to change from 1.L4, behaves in
a manner that can be calculated by classical shock-wave theory. Figure 2,
taken from reference 3, is a plot of the shOck—wave angles for 7 =1. )}
and is applicable in this region.

Region 2: The second case to be considered deals with the flow at
a point on the wedge far behind the nose (region 2). The distance of
this point from the wedge nose is sufficiently large to cause the shock-
wave thickness plus the relaxation distance to appear only as a thickened
shock wave far shead of the point. Furthermore, the influence of the
part of the shock wave near the nose of the wedge is negligible in com~
parison with the effects of all the other parts of the shock wave in the
forward Mach cone from the point. Thus, the angle of the shock wave far
from the nose of the wedge must be such as to yield a flow parallel to
the surface in region 2, where the density is that which results from
the heat capacities having reached equilibrium conditions as predicted
in reference 2, Figure 3, computed with the use of reference 2, and
equations (1la) and (2), is applicable for computing the shock-wave
angle 6, To the left of the dashed line in figure 3 the curves are
the same as those of figure 2; however, the parts of the curves on the
right of the dashed line are in the range of varylng specific heats and
are different from those of figure 2, the difference increasing with
deflection angle and Mach number. Figures 2 and 3 indicate the large
error which would result from use of classical shock-wave theory to
compute Mach number from shock-wave-angle measurements at very high
free-stream Mach numbers. For instance, for a flow deflection of 20°,
which sets up a shock-wave angle of 25° (far from the nose), classical
theory predicts a Mach mumber of 15 (fig. 2); whereas the theory allowing
for variable specific heats predicts a Mach number of 11 (fig. 3). This
difference in the calculated Mach numbers indicates that, although the
effect of variation of 7y on the flow properties may be small, it may
be equal to or greater than the effect of variations in Mach number at
these high speeds. This fact should be kept in mind during any testing
at high Mach nmumbers or testing in gases other than air,

Region 3: The third case deals with the flow immediately behind
the shock wave but far behind the nose of the wedge (region 3). .-In this
region, the shock-wave angle has already been determined by the boundary
conditions in region 2, The heat capacities have not yet had sufficient
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time to change appreciably and, consequently, the flow properties can be
predicted by classical shock-wave theory. The flow deflection will be
smaller than is required to ceuse the stream to be parallel to the wedge
surface. Figure 2 is applicable in this region; however, here the shock-
wave angle 6 is known (from region 2), and the flow deflection is
unknown; whereas in region 1 the opposite was true.

As en example of the three cases consider a wedge with a 30° slope
at a Mach number of 10 at sea level:

Case 1: At the nose of the wedge the shock-wave angle is 38.5°
(fig. 2) if boundary-layer effects are ignored. -

Case 2: Far from the nose of the airfoil the shock-wave angle is
37° (fig. 3).

Case 3: The flow deflection immediately behind the shock wave but
far from the nose of the airfoil is about 28 8° for the 37° shock-wave

angle (fig. 2).

The previous discussion has dealt only with certain limiting cases
of the flow parameters and gives no insight into the distance required
to approach equilibrium and no determination of the curvature of the
shock wave. Bethe and Teller indicate that the translation and rotation
come into thermal equilibrium after one or a few collisions. From 20
to 500,000 collisions are necessary to establish vibrational equilibrium,
depending on the vibrating molecule (nitrogen or oxygen) and the humidity
of the air. Water vapor acts somewhat like a catalyst in increasing the
efficiency of the collisions in redistributing the energy. For normal
shock waves at sea level, the distance required for the vibration to
reach equilibrium lies between 3 and 0,0016 millimeters. For oblique
shock waves, the relaxation distance is actually greater because the
flow velocities are higher; however, when measured normsl to the shock
wave, the distance is the same for normel and oblique shocks. The
dissociation requires from 1 millimeter to 1 meter to reach equilibrium
for the normal shock at sea level. At altitudes above sea level, more
dissociation occurs at a given temperature, and also fewer collisions
in a given distance. The effects of heat-cepacity variation and lag,
therefore, may take on added significance at high altitudes.

In simple cases, the flow parameters follow an exponential law in
approaching equilibrium. If the shock wave is strong enough to cause
dissociation on the high-pressure side, the vibration gradually approaches
equilibrium, and then, much more slowly, the dissociation approaches equi-

«1ibrium. The curvature of the shock wave is related to the rate at which

the various degrees of molecular freedom approach equilibrium, If equili-
brium is established rapidly, the shock wave must change from its initial

angle to the final angle in a short distance. Hence, the wave will be
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curved appreciably over the short distance and then will be fairly
straight beyond that point, If the shock wave is strong enough to
require several different regions of flow, each of extent determined by
the rate of approach of a particular degree of freedom to equilibrium,
then the shock wave will have several distinct parts, each related to
one of the regions of flow. The magnitude of the changes in shock-wave
angle is small and the wave forms a continuous curve.

A study of figures 2 and 3 indicates that maximum deflections of
as much as about 45° are possible with attached shock waves when the
specific heat is constant; whereas deflections of over 50° are possible
when the specific heat reaches equilibrium. Because the flow near the
leading edge behaves as though the specific heat remains constant, the
deflection at the leading edge must be less than the lower limit (the
value for constant 7). The slope of the surface can increase behind
the leading edge as the specific heat varies without causing the shock
to detach.

Figures 4 and 5 give the density ratios across oblique shock waves
with constant and variable specific heats, respectively. These figures
result from equations (la), (1b), and (2), and table VIII of reference 2.
As an example of the use of these figures consider the previously studied
problem of the flow over a 30° slope at a Mach number of 10:

Case 1: At the nose of the wedge the density ratio across the shock
wave is 5.33 (fig. 4).

Case 2: Far behind the nose of ,the wedge the density ratio has
increased to 6.08 (fig. 5).

Case 3: Far from the nose of the wedge but immediately behind the
shock wave the density ratio is 5.27. (See fig. 4 and use the flow
deflection of 28.8° previously determined for this case.)

Figure 4 shows how the flow density ratio -immediately behind the
shock wave approaches the classical limiting value of 6 as the shock
waves become stronger. In contrast, figure 5 gives no indication that
a limiting value exists far behind the shock wave. Calculations similar
to those of reference 2 can be used to extend the curves to higher Mach
numbers where the dissociation is more and where electronic excitation
1s significant. The curves should not be extrapolated without actual
calculations because the trend of the curves may change every time a new
degree of freedom is excited.,

-From considerations of continuity of mass flow, the ratio of the
velocity components normal to obligue shock waves is equal to the recip-
rocal of the density ratios across the waves. The velocity components
tangential to the waves are the same before and after the wave. Because

e e eme e e ey ————— -— e
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the shock-wave angle from figure 2 or 3 and the correéponding density
ratio from figure 4 or 5 are known, the velocity ratio across the wave

is easily obtained. These velocity ratios are plotted in figures 6 and T.
For the flow over a 30 slope at a Mach number of 10:

Case 1: At the nose of the wedge the velocity ratio across the
shock wave is 0.791 (fig. 6).

Case 2: Far behind the nose of the wedge the velocity ratio has
increased to 0.80k (£ig. T).

Case 3: Far from the nose of the wedge but immediately behind the
shock wave the velocity ratio is 0.812 (fig. 6).

The variation in heat capacity increases the change in density
across a given shock wave. For the flow over a wedge, the increase in
density decreases the required shock-wave angle, The effects of
increased density and decreased wave angle largely cancel insofar as the
velocity of the flow is concerned.

Bethe and Teller have given the pressure ratios across normal shock
waves with and without the variation in heat capacity. The pressure
coefficient for the oblique shock waves can immediately be determined
by use of the previously determined Mach numbers for oblique shock waves
of a strength equal to the normal shock waves of Bethe and Teller. These
coefficients are presented in figures 8 and 9. The flow over a 30° slope
at a Mach number of 10 can be determined by use of these figures:

Case 1: At the nose of the wéhge the pressure coefficient is 0.628
(£ig. 8). . ‘

Case 2: PFar behind the nose of the wedge the pressure coefficient
has dropped to 0.610 (fig. 9).

Case 3: Far from the nose of the wedge but immediately behind the
_shock wave the pressure coefficient is 0.596. (See fig. 8 at a deflec-
tion of 28.8°.)

The pressure coefficient is very insensitive to the variation in
heat capacity experienced in most oblique shock waves. In fact, for
thin airfoils at sea level no effect of heat-capacity change is to be
expected below a Mach number of 20. Even at a Mach number of 100 the
effect is small. At higher altitudes where more dissociation might be
expected for equilibrium conditions and where the relaxation distance
may be long, the effect of heat-capacity lag or heat-capacity variation
might be significant,” particularly for blunt objects such as a pitot tube.

. With the previous information in mind, the accuracy of the calcu~-
lated shock-wave properties may be discussed. Bethe and Tellqr'g paper
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suggests that the authors have used all known corrections in calculating
the heat cepacity at high temperatures; however, apparently they did not
consider thelr results sufficient for the determination of the speed of
sound behind strong shock waves. Because Bethe and Teller work with the
total heat content of the gas, the determination of the speed of sound
would require differentiation of some of their numerical quantities and
the results might therefore be appreciably less accurate than their
other results., Thus, the Mach number behind strong oblique shock waves
cannot be accurately calculated from the work of reference 2. Refer-
ence 4, although not as rigorous as the work of Bethe and Teller,
possesses the advantage that the specific heats are explicitly given for
any flow condition; hence, the Mach nmumber behind the shock can be calcu-
lated from this reference.

The density ratio across the shock wave 1s fairly sensitive to the
change in specific heat and, therefore, would be less accurate than many
of the other shock-wave parameters, Bethe and Teller, however, consider
density ratios sufficlently accurate to publish; therefore, the pressure
coefficient which is very insemsitive to a small error in heat capacity
would be extremely accurate., The actusl relaxation distance is greatly
affected by small changes in the atmosphere such as change in humidity;
thus, the distances estimated in the present paper give only the order
of magnitude of the relaxation distance. For many cases, the relaxation
distance is sufficiently small for its effects near the nose of the air-
foil to be masked by the boundary-layer growth in this region.

Derivation- of Pressure Equation

Existing theories such as ‘the linearized theory or Busemann's power-
series, (reference 5 with the third coefficient corrected) form a simple
means for calculating pressure distributions at low or moderate super-
sonic speeds. Where a solution in explicit form.is not required, the
more tedious shock-expansion method or characteristic method may be
desirable in order to obtain an'accurate solution for the higher Mach
numbers. For curved airfolls, rotation of the flow at high supersonic
speeds must be considered., The rotational flow over wings and bodies
at infinite Mach numbers for a ratio of specific heats equal to 1.0 has

- been discussed in reference 1, The present paper furnishes additional

information on the effect of heat-capacity variation. Figure 10 indi-
cates the range of application over which linearized theory and
Busemann's power series are reasonebly accurate. The linearized theory
is reasonsbly accurate up to a free-stream Mach number of approxi-
mately 2, and the power series retains its accuracy up to M, = 10 for
two terms and M, = 15 for three terms. Within these limits these
equations are useful in the determination of airfoill properties because
they can be readily differentiated and integrated with respect to Bf.
It is preferable to use the simple theories wherever possible. At

I o —— —————— s = e o Pp——
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higher Mach numbers where the variation .in specific heats becomes signi-
ficant, it is desirable to have an equation which gives the pressure
coefficient as an explicit function of the flow deflection, free-stream
Mach number, and effective ratio of specific heats. The purpose of the
present section is to derive an equation of this type. In order for
such an equation to be of value it.should possess as nearly as possible
the simplicity of the linearized theory and the accuracy of the shock-
wave solution and it should apply over a very large Mach number range.

The derivation begines by consideration of the following relation for
the density ratio across an oblique shock wave: :

P tan 8 _ 7 +1 (3)
i — — 0 -
p, tanlé -BY) . 4, 2
. Mm2sin26
where
6 shock-wave angle
B* flow deflection
M, Mach number ahead of shock wave
¥4 ratio of specific heats

In the first part of the derivation the deflection is assumed to be
small and, hence, the tangent of B! can be taken as B'. The shock-
wave angle 6 1is assumed small enocugh to be approximated by a two-term
series (that is, M, i1s large). Expanding equation (3), dropping the

. i 4
smallest terms, such as 63, B'2 and —Lz, and solving for 6 gives
M

- .
op = 7. 1 +\[<Z_+_1.Br) + 2 (&)
2 2 M2

This expression gives the shock-wave angle accurately at moderate and
high supersonic speeds where the assumptions are permissible. From
shock-wave theory, the expression for the pressure coefficient is

_ 2 sin 6 sin B° '
" “cos(8 - BY) (5)

[
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Substituting the velue of 6 from equation (L), and keeping significant
terms gives

2
_ a7y 1 y + 1 4
P=2p'0 =8 "—é—-ﬂ' +\/< 5 ') + M——wa (6)

The equation is ‘now valid only for large Mach numbers and must be modi-
fied before being useful at lower speeds. At low supersonic speeds
equation (6) simplifies to

Pz (7
\—IM.,?
whereas from linearized theory _

28!

Ve ®

Making this correction to the pressure equation yields

P =

2
p- ol () - (5)

M2 -1

Figure 11 shows that this equation is a good approximation at Mach
numbers above approximately 1.5 and at lower Mach numbers is more
accurate than the linearized theory., Even at extremely high Mach numbers
the equation yields accurate results. In order to obtain the greatest
accuracy from this equetion, the proper value of 7y should be used.

This value may be obtained for sea-level conditions by use of equations
(12) and (1b) and figure 3. In order to be perfectly rigorous, a new
value of 7y should be computed for each deflection angle and Mach number.
This procedure, however, is more involved than the accuracy of the equa-
tion warrents, and in actual computations, a value of 'y computed for an
average deflection angle and a given Mach number give satisfactory
accuracy over a large range of deflection angles. The restrictions to
the use of equation (9) are that the shock wave must be attached and the
deflection must be small.

. Busemann's series expression for pressure coefficient (reference 5)
shows that to the second order in the deflection the same expression
should hold for expansion waves and shock waves. Hence, equstion (9)
should be valid for weak expansion waves. Figure 12 indicates that the

o e mmee—s s s — - — e =
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pressure equation checks the exact Prandtl-Meyer equation for expansions
between M = 1.5 and 20. Above Mach number 20, the pressure coefficient
due to an expansion is negligible by comparison with the shock-wave
pressure for the same deflection. Below M = 1.5, the present theory
is more accurate than the corresponding linearized expression. For
expansions, B! 1is considered negative and, hence, the absolute magni-
tude of the pressure coefficient is less for expansions than for com-
pressions., For the case of M, = », the present theory is exact for
both shock waves and expansions, For that case, the pressure coeffi-
cient for a shock wave becomes

[

P = (7 + 1)pr2
and for an expansion,
P=0

Figure 13 compares a pressure distribution over a double wedge airfoil
as calculated by the present method with the pressures computed by the
shock-expansion method of reference 3 for 7y = 1.4k, The agreement is
good. '

Figures 14 and 15 give the 1ift and drag coefficients, respectively,
for single-wedge airfoils with semiwedge angles of 1°, 29, and 3° at
various angles of attack as calculated by two methods: +the shock-'
expansion method using variable 7; and the present pressure equation.
The present theory gives good agreement in both trend and magnitude.

In cases where rotational flow need not be considered, the present
method ylelds satisfactory results for shock waves, expansion waves, or
complete airfoils. For curved airfoils at high supersonic speeds, some
of the 1deas of reference 1 may possibly be employed to modify the
approximate method of the present paper in such a way that the rotation
of the flow can be taken into consideration In a simple.manner,

A part of the spproximate pressure-coefficient equation predicts the
shock-wave angle, Where the equation 1s used for expansions, the same
terms specify the location of a fictitious negative shock wave located
between the terminal Mach lines of the actusl expansion.

CONCLUDING REMARKS

The work of Bethe and Teller on the properties of strong normal
shock waves has been extended to oblique 'shock waves for facilitating
studies of the effect of heat-capacity veriation on efficient aero-
dynamic shapes at high supersonic speeds. The significant conclusion
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is that the heat-capacity variation should not be noticeable on thin
airfoils below a Mach number of 20 although it may modify the flow over
a blunt body at a Mach number as low as 2 at sea level. At higher
altitudes heat-capacity lag may be noticeable.

The study of heat-capacity effects was used as background infor-
mation to derive a very simple expression for predicting pressures due
to shock waves and expansion waves at Mach numbers from 1.3 to ., The
pressure equation is applied to several problems and is shown to be

surprisingly accurate,

Langley Aeronsutical Laboratory
National Advisory Conmittee for Aeronautics
Langley Air Force Base, Va.,, June T, 1950
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Figure 1.- Location of reglions to be investigated.
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